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ABSTRACT      

The study investigates laminar natural convection flow around a vertical rectangular inclined plane surface, 

specifically focusing on the effects of viscous and pressure stress work. Previous research primarily 

addressed these effects in two-dimensional natural convection flow scenarios, while this study extends the 

analysis to encompass three exterior situations, accounting for variations in fluid properties outside 

compressible boundary layers. Employing numerical methods, the study aims to predict essential flow 

parameters including Prandtl’s number (Pr), controlling parameter (C), and additional parameters (A, B, D, 

E, ∅). The investigation yields velocity profiles (F'(0), S'(0)), temperature profiles  0 , skin frictions (F''(0), 

S''(0)), and heat transfer coefficients θ'(0). Numerical results are presented to illustrate the impact of different 
parameters on these flow characteristics. Additionally, tabulated data in Table 2 and Table 3 offer further 

insights into the predicted flow parameters and their variations under varying conditions.  
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INTRODUCTION: 

Howarth, (1953) discussed the properties of these 

solutions for 0
b

c
a

  ,
1 1 3

, , , and 1
4 2 4

. The limiting 

values c=0 and 1correspond to the two-dimensional 

and axially symmetric stagnation points, respectively. 

Later Davey (1961) showed that similar solutions 

exist for  1c   . The similar solutions for oc1  

correspond to the flow near saddle-points of attach-

ment and may in some cases are related to the flow in 

the vicinity of geometrical saddle-points on the 

surface (Akter et al., 2023).  
 

The energy equation for an elementary fluid volume 

was derived by Howarth, (1953) through the balance 

of the rates of convection of particular internal and 

kinetic energies into the volume, as well as the rates 

of heat conduction into the volume and the rates of 

body force, pressure, and viscous stresses acting on 

the volume. This concept leads to a number of 

alternate variants of the energy equation, which are 

found by substituting some other feature of state for 

internal energy. Moreover, the momentum equation is 

typically used to eliminate the kinetic energy element. 

It is important to remember that only specific phrases 

that indicate the speeds at which pressure and viscous 

stresses operate are still expressly present in all of 

these different formulations.  
 

These types of pressure and viscous stress work 

effects are typically disregarded in discussions and 

analyses of natural convection flows. However 

(Gebhart, 1962; Gebhart and Mollendorf, 1962) have 

2024 

 

 

 

Publisher homepage: www.universepg.com, ISSN: 2707-4625 (Online) & 2707-4617 (Print) 
 

 

https://doi.org/10.34104/ijmms.023.048061 
 

 
 

http://www.universepg.com/
mailto:pradip.duet@gmail.com
https://doi.org/10.34104/ijmms.023.048061
https://doi.org/10.34104/ijmms.023.048061
http://www.universepg.com/
https://doi.org/10.34104/ijmms.023.048061
http://www.universepg.com/journal/ijmms


Alam et al., / International Journal of Material and Mathematical Sciences, 6(3), 48-61, 2023 

Universe PG l www.universepg.com                                                                                                                                       49 

also looked at the significance and impact of viscous 

stress work effects in laminar flows. Special flows 

over semi-infinite flat surfaces oriented parallel to the 

direction of body force were taken into consideration 

in each of these investigations. Gebhart, (1962) 

considered flows generated by the plate surface 

temperatures which vary as powers of   (the distance 

along the plate surface from the leading edge), and 

Mollendorf, (1969) considered flows generated by 

plate surface temperatures which vary exponentially 

in  . In both of these investigations the length scale 

was
C

p

G
, where   is the volumetric co-efficient of 

thermal expansion. Since this length scale is usually 

extremely large for most fluids, it was shown that 

viscous stress work effects are very small in most 

situations. For example, in the case of constant 

surface temperature, Gebhart, (1962) showed that 

viscous stress work effects are governed simply by the 

ratio of   and the above large length scale. It is easy 

to show that this ratio is the Eckert number for this 

flow.  
 

Free convection from a vertical permeable circular 

cone with pressure work and non-uniform surface 

temperature was carried out by Alam et al. (2007). 

The impact of viscous dissipation and pressure stress 

work in natural convection flow along a vertical flat 

plate with heat conduction was examined by Alam et 

al. (2006). The Joule heating effect on the coupling of 

conduction with magneto-hydrodynamic free 

convection flow from a vertical flat plate was 

investigated by Alim et al. (2007). The joint impact of 

joule heating and viscous dissipation on the coupling 

of conduction and free convection down a vertical flat 

plate was illustrated by Alim et al. (2008). The 

numerical investigation of temperature-dependent 

viscosity and thermal conductivity on a natural 

convection flow across a sphere in the presence of 

magneto-hydrodynamics was covered by Alam et al. 

(2018). Viscos dissipation and temperature-dependent 

viscosity on MHD free convection flow over a sphere 

with heat conduction were numerically studied by 

Alam et al. (2018). It is noted that several studies 

have focused on including both pressure work effects 

and viscous dissipation in the energy equation for 

laminar boundary layer natural convection flows. 

Conventional analysis typically overlooks both the 

effects. Here, the energy equation retains the effects 

of pressure and viscous stress work. The effects of 

pressure and viscous stress work on natural convec-

tion flow on a flat surface were investigated by 

Ackroyd, (1974). In this instance, we also looked at 

how pressure and viscous stress interact to create 

laminar natural convection flow around a plane 

surface that is inclined and vertical. 
 

Boundary-layer equations and transformations 

We examine a three-dimensional laminar natural 

convection fluid flow that is stable and has a high 

Reynolds number around an OABC, which is a 

vertical, inclined plane surface. The selection of 

cartesian coordinates  , ,     is made according to 

fig. A. While stretches into the boundary layer, the co-

ordinates   and   are thought to lie and be defined in 

the surface that the boundary layer is flowing over. 

Here   represents an actual distance from the surface 

measured along a straight normal in this instance. 

Where the gravitational force  , , 0G g g      is, 

the components of the gravity vector are g and g, 

respectively, in the  and  directions. 
 

 
 

Fig. 1: Geometry. 
 

OH direction is the horizontal direction. OG is the 

vertical direction. OK is  to the plane. O 

rectangular plane is inclined at angle  with vertical 

plane HOG. 

The compressible laminar natural convection flow 

about a vertical rectangular inclined surface is 

governed by the following equations: - 

 

Continuity equation,       0u v w  
  
  

  
  

   (1) 
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u- momentum equation,
u u u p u

u v w g       
        

                
  (2) 

v- momentum equation,
v v v p v

u v w g       
        

                
  (3) 

and w- momentum equation,
𝜕𝑤𝜕𝜁 = 0   (4) 

 

The energy equation in simplified form 

2 2

                                                                         

T T T p p
C u v w u v k

p

u v


      


 

           
                    

                 

 (5) 

 

The terms ,g g    represent the body force components exerted on fluid particle.  

For thermally perfect gas , 𝛽 = 1𝑇 so that 1T   and 1 p

T p




     
 

(6) 

Conditions exterior to the boundary layer (denoted by suffix e), at which the exterior fluid is at rest 

 

 

for thermally perfect gas 0     implies that   

   and   0     implies that    

dp dp
g g

e ed d

dp dp
g g

e ed d

   

   

   

  


 
(7) 

 

Therefore, the modified three-dimensional governing equations for the compressible steady flows [using 

(3-6e) and (3-7)] are, 

Continuity equation       0u v w  
  
  

  
  

   (8) 

u-momentum and v-momentum equations: - 
 

 u u u u
u v w g

e
       
       

              
 

  (9) 

 

and  v v v v
u v w g

e
       
       

              
 (10) 

Also the energy equations,

2 2

T T T p p
C u v w T u v

p

T u v
k

 
    


   

       
             

                           

 (11) 

where 
2 2

u v
 

 

 
 

 

        
     

 is known as the viscous 

dissipation function and  represents that part of the 

viscous work necessary for the correct balance of 

energy in this particular form of the energy equation, 

the term 
p p

T u v
 

  
   

 represents the corres-

ponding part of the pressure work. It is the latter term 

which is ignored by Gebhart, (1962) and Gebhart and 

Mollendorf, (1962). Ackroyd, (1974) and Zakerullah, 

(1962) considered for two-dimensional and axi-

symmetric flow respectively status reasons for their 

inclusion simultaneously. 

 

Now the non-dimensional temperature difference,  

 
   
   

   
 

, , , , , ,
, ,

, , ,

T T T T
e e

T T T
w e

         
   

     

 
 

 
   (12) 

Where  

     , , ,T T T
w e

          (13) 
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We change the independent variables  , ,    to a new set of variables (X, Y, ) and relations between  

two sets of variable are given by:  

  
 

1

2 4

 ,    and   
1216 0

G T
rr r rX Y d

X CY
r

  
  



          

 
 (14) 

C is the additive parameter and the suffix ‘r’ refers to 

any convenient reference condition and also  rT  is 

any convenient reference temperature difference.  

 

Let two stream functions   ,,  and   ,,  be 

defined as the mass flow components within the 

boundary layer for the case of compressible viscous 

flow. To satisfy the equation of continuity, we may 

introduce the components of the mass flow in the 

following way,  

,   and    u v w
       

           
   (15) 

 

In order to seek the similarity functions, we introduce the following equations,  
 

   , , and , ,

0 0

u v
d F X Y d S X Y

U U
r F r F

 
 

 
      

 
  (16) 

Where    U G T X CY
rF r
     which represent the characteristic velocity (maximum) 

generated by the buoyancy effect and (X+CY) denotes some characteristic length. Therefore, 

    , ,  and , ,
u v

F X Y S X Y
U U

r F r F

 
 

    
 

 

 

 

  (17) 

 

  
1

2 2 3 4Thus we have ( , , ) 16 ( ) ( , , )rX Y G T X CY F X Y
rr r r


   



              
 (18) 

  
1

2 2 3 4Similarly we have, ( , , ) 16 ( ) ( , , )rX Y G T X CY S X Y
rr r r


   



              

 (19) 

 

Equations (9), (10) and (11) can be written most simplified form using the above relations, we have 
 

u-Momentum Equation: 

 

24 1

2 2

e g

r r r rF F C S F
G T

rr r r


   

      

 
                                            

 

3 4( )r r r r r rF F F F X CY F F
X X

     

     

                                                      

 

 

r r r r r rF F S F C F S
X Y Y

     

     

                                                            

 

(20) 

v-Momentum Equation 
 

 

24 1

2 2

e g

r r r rS C S S F
G T

rr r r


   

      



 
                                           

 

3 4( )r r r r r rS F F S X CY F S
X X

     

     

                                                      

 

r r r r r rS F S S C S S
X Y Y

     

     

                                                            

 

(21) 
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And the Energy Equation 

4( )
3

C C Tp X CY Tp er r r rF C S F
C C P T X X

p r r p r
r

     
    

                                              
 

 

2 2( )
( )4( )

X CY C
T p TX CY Te r r r r rS F S

T Y Y LC T
p r r

  
    

                                                   

 

4 4

4( )

g g
T Te er r r rF S X CY F F

G T G T X X
r r

        
       

                                               

 

r rS S
Y Y

  
 

                      

 
(22) 

 

Where ( , , ) , ( , , )    and   ( , , )F X Y F S X Y S T X Y T       are written respectively. 

Also, the boundary conditions of the above equations are 

( , ,0) ( , ,0) ( , , ) 0, ( , ,0) ( , ,0) ( , , ) 0

and         ( , ,0) 1, ( , , ) 0

F F F S S S           
     

           
   

 (23) 

Here primes denote differentiation with respect to  and the parameter L (which has the dimensions of length) 

is defined as      

C
p
rL

G
r





 (24) 

In left hand side of (22), the effect of viscous work 

and pressure work are found to be proportional to the 

first and second, third terms in square brackets 

respectively.  

The first term is of order

2 2

r rF S
 

 

    
      

   
,  

The 2nd and 3rd terms are of order 
( )

T
r rF

T
r





 
    

 

and 
( )

T
r rS

T
r





 
    

respectively. It would appear that 

for both liquids and gases the effect of pressure work 

is not necessarily small in comparison with the effect 

of viscous work. Furthermore, both stress work terms 

are seen to be multiplied by X CY

L

 . Thus, we note 

that the importance of the two stress work terms 

(relative to those terms representing convection and 

diffusion of heat) is determined largely by the nature 

of the Te and T variation. These points will be 

examined in detail in the following sections. 

 

Now (14) can be written as, 

1
2

1

0 12 ( )

R
e d

X CY
r

 


  


 

 

 

(25) 

Here 
r

CYX
F

U
r

e
R



 )( 
  is a Reynolds number based on the characteristic free convection velocity UF

defined by Ostrach (1964), where ,  

2
2 ( ) ( ) and

( )

UX CY FU G T X CY
F r r L C T

P r
r

 
    



 (26) 

Which is the Eckert number based on UF and charac-

teristic length (X+CY). 

We shall obtain solutions of (20), (21) and (22) to first 

order of 
X CY

L


 only, because is the most cases of 

natural convection flow (X+CY)/L<<1as explained by 

Ackroyed, (1962). condition. For thermally perfect gas,  

 

1
,p T

T
    (27) 
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Following procedure as Ackroyd, (1974) we have 

1

,
( ) ( )

e
T T TT T er r r

T T T T T T
r r r e r e


   

  




  
   

 (28) 

 

,
d

d dT dp dT dp
T T

   


      or   or, 
 T T p p

e T r re

r

 



  
  

i.e           ~1e T T p p
r r r r

r





    

(29) 

where 

1 1
,

and  , ,

r rT pp T rr

T T p p T T Te r e r rT p T T
T p T T
r r r r

 
 



                          
          

 
 (30) 

Where pT ,  and 
r

T

T  are all small compared with unity, and  is at most of order unity in the boundary layer 

but 0  in the exterior fluid, we shall find in the following section that the leading terms in the expressions 

for T and p  are of order .
L

CYX   Again using (27), also we have - 

  1 2 2 2~ 1 1
2

e e r T T p p T T p p p p
r r r r r r r r rT pr r

  
 

  

                  

 

2 2
1 1

1
22

TT T r rT p p T
r r r r rT T T Tp pr r r r

    


                                    

 

2
12 2 1
2

T
T T O

r r T Tp rr




                       

 

And
21

1
~ 1 1

2( ) ( ) 2

e
TT T Tr r O

T T T T Tpr r r r rr


   

 

                          

 

2
T T p T

T O p O
T T T Tp pr rr r


 

                                                          

 
  (31) 

Since for a thermally perfect gas 1
   where  ( , )T p

T
     

 
1

  and  0
2T TTp p

              
 

  (32) 

We expand the later to first order in small quantities and obtain; to zero order in T   and p  ,  

1
~ 1 1

2

TT Te r T O
r rT T T Tpr rr

   
  

                          

 
 

  (33) 

Using (3-33) in equation (3-34), we have 

1
~ 1 1

2 2

TT Te r T O
r rT T TTr rr

   
  

                        , 

T T T
r r r

T T T
e

   
 

 
 

  (34) 

[Since by zero order in , 1
TX CY r

L T
e


 ].  

Two straightforward examples of representative 

exterior property fluctuations are examined here for 

differences in surface temperature and external 

circumstances. These situations have effects that are 

similar to those of stress work. These are the 

circumstances where temperature and entropy are 
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constants in the first place. For each of these two 

scenarios, ideal gases both thermally and calorically 

and general fluids undergoing slight states changes 

are taken into consideration.  

For convenience in the following analysis, we write

X CY
x Cy

L


  ] 

 

Expansions for 𝑥 + 𝑐𝑦<<1, three cases of exterior 

properties and T  variations are considered for 

perfect gases and general fluids. These are    
 

  (1) onstant,  constant  so that constantT T c T T T
e r w r
        

 (2) cons tan , constantS t T T
re

     . 

 (3) constant, constant so that 1 constant.
T
eS T T T T

re w r T
r

  
         
    

 

Since we have chosen for simplicity to consider 

exterior properties and T variations which are 

governed by the length scale L. The u-momentum, 

v-momentum and energy equations can be written 

entirely in terms of the independent variables 

 ,,, yx  the latter two variables being generally 

small compared with unity. Here  X CY
x Cy

L


   

which implies that Y
and y

L

X
x

L
  , but Cyx  <<1 

considering 0<C<1,  

so that 1 thanlessisyalsoand1 thanlessis
L

Y
  x

L

X  . 

Now we have to expand the dependent variables F, 

S and   by straight forward expansion in integer 

powers of (𝑥 + 𝐶𝑦).  

Thus, the assumed expansions are,  𝐹(𝛷; 𝑥 + 𝐶𝑦) = 𝐹0(𝛷) + (𝑥 + 𝐶𝑦)𝐹1(𝛷) + 𝑂(𝑥 + 𝐶𝑦)2 𝑆(𝛷; 𝑥 + 𝐶𝑦) = 𝑆0(𝛷) + (𝑥 + 𝐶𝑦)𝑆1(𝛷) + 𝑂(𝑥 + 𝐶𝑦)2, 𝜃(𝛷; 𝑥 + 𝐶𝑦) = 𝜃0(𝛷) + (𝑥 + 𝐶𝑦)𝜃1(𝛷) + 𝑂(𝑥 + 𝐶𝑦) 
 

Expressions for the additional dependent variables contained in (20) to (22) which are found by the following 

way, 
 

 

        

        

   

   

1
2

,
0 1

2
1

1
,

0

1

0

e

x Cy A O x Cy
T

rr

B x Cy D O x Cy

r r

C g Tp T Te er E O x Cy
T C G x x

p r

C g Tp T Te er H O x Cy
T C G y y

p r



  



 

    
 

    
 




        



      


                 
                  

 
     

 
 

1

Also, 1 and 1 .
0

Here  , ,    and  are considered.

1 , Where 1

T Tr O x Cy B
T T

P P P P C C
r r r p p
r r

Tr

T
r









                  
  

          
    

 

 

We calculate the values of A, D, H and E for three cases by similar way. These values are shown in the 

following table. 
 

Table 1: Values of A, D, H and E.   
 

 Case-i Case-ii Case-iii 

A 0 
0
  

1
0 ( )

T
r

T
r


   

  
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D ( )
( 1)

1

( )1
1 ( 1)

0

T
r

T
r
T

r

T
r

 



 







 

 

( )
( 1)

1

( 1)
( )1

1 ( 1)
0

T
r

T
r
T

r

T
r

 
 


 




  


 

 

( )
( 1)

1 0

( 1)
( )1

1 ( 1)
0

T
r

T
r

T
r

T
r

  
 


 

    
    


 

 

E 

1
0( )

g gT
r

T G G
r

 
 
  
 
 

 1
0( )

gT
r

T G
r


          

 1
0( )

gT
r

T G
r


          

 

H 

1
0( )

g gT
r

T G G
r

 
 
  
 
 

 1
0( )

g gT
r C

T G G
r

 
   
     
   
   

 1
0( )

g gT
r C

T G G
r

 
   
     
   
   

 

 

For isothermal cases, in momentum equations and 

energy equations, we considered   1B    and 

    0.A D     With the approximation 1,  it is 

implies that   1,B    but from table we see that A 

and D is not equal to zero. It will be noted that 

fluctuations in the exterior and surface conditions 

give rise to the finite values of the variables A and 

D; Gebhart, (1962) ignores these effects. We can see 

from the talks in the preceding section that it is 

impossible to select a set of outside conditions that 

would cause both A and D to be zero at the same 

time. The energy equations' pressure work effects. 
 

4( ( )) 1 (1 )
0 0

T
E F

wT
r

 
     
 
 

and 

4( ( )) 1 (1 )
0 0

T
H S

wT
r

 
     
 
 

 whose modified 

forms are neglected in Gebhart, (1962) analysis. It is 

seen from take 1 that, in most cases, the values of A, 

D, E and H are not small compared with viscous 

work effects. 
 

Inherent in both the analysis of Gebhart, (1962) and that of Gebhart and Mollendrof, (1969) is the assumption 

that 
( )

1.
T

r

T
r


  For convenience, we write 

( )T
r

T
r


  and also  

 ( )
1 (1 ) ~ 1 (1 ) 1 (1 )

TT r
w w wT T

r r

  
            
   
   

  

(36) 
 

Substituting (36) in momentum equations and 

energy equations and then equate the co-efficient of 

0
 from both sides. By using the above expressions 

(36) and also applying the three cases in the u-

momentum, v-momentum and energy equation and 

then also equating, we have the zeroth 0( )x Cy  and 

first order  x CY equation the following form 

 

 

20 2 2 3 3 4 sin 0
0 0 0 0 0 0 0 0

20 2 2 3 3 4 cos 0
0 0 0 0 0 0 0 0

0and   3 0
0 0 0

BF
F CF S F F CS F

P
r

BS
CS F S F S CS S

P
r

B
F CS

P
r

 

 




                  
               

   


  
    
   

 

 

 

 

 

 

  (37) 

Boundary conditions are given below 
 

(0) (0) ( ) 0, (0) (0) ( ) 0
0 0 0 0 0 0

F F F S S S            and  (0) 1, ( ) 0.
0 0
         

(38) 

Similarly, the first order of x and y, 
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'''' ' ' ' '' ' ' ''[ { }] 8 7 6 7
1 0 0 1 0 1 0 1 1 0

'' ' '3( ) 2 4{ }sin 0
0 0 1 0 1 1

'''' ' ' ' '' ' ' ''[ { }] 8 (3 4 ) 6 7      
1 0 0 1 0 1 0 1 1 0

'' ' '3( ) 2 4{ }cos 0
0 0 1 0 1 1
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(39) 

 

The boundary conditions for the above first order u-momentum, v-momentum and energy equations are shown 

below. 
 

' ' ' '(0) (0) ( ) 0, (0) (0) ( ) 0
1 1 1 1 1 1

F F F S S S         

And      (0) ( ) 0
1 1

   
        

 
 

    

(40) 

The transformed equations can be solved with the help of the controlling parameters Pr    , A, B, C, D, E, H, 

rT

T
)(


. 

 

RESULTS AND DISCUSSION: 

The non-linear and connected two-point boundary 

value issues are represented by a single set of equa-

tions and their corresponding boundary conditions, 

that is, one set of equations (37) with boundary 

conditions (38). Analytically solving them is challen-

ging. Therefore, we use a process to obtain the 

numerical solutions. We solve the equations numeri-

cally by using the Runge-Kutta Merson method in 

conjunction with the Runge-Kutta shooting method 

and the Swigert iteration technique. By utilizing the 

straightforward expansion, the higher order non-linear 

differential equations are essentially reduced to a 

series of first order initial value problems with 

corresponding boundary conditions. To solve the zero 

order equations (37) with their typical boundary 

conditions, the Runge-Kutta shooting method, the 

Runge-Kutta-Merson method, and the Swigert itera-

tion technique (i.e., guessing the missing values) are 

taken into consideration. The nature of the flow 

processes resulting from free convection flow will be 

covered in the next section for a range of controlling 

parameter values (Pr, C, B, (T/T)r). The velocity and 

temperature profiles for the zero order transformed 

similarity equations are shown in Fig. 1 and 2. The 

impacts of skin friction factors and heat transfer 

coefficient for the zero order with a rise in C are 

displayed in Fig. 5 and 6. The velocity components 

rise as C increases and vice versa, as seen in the given 

Fig. 2a and 2b. However, what's interesting in this 

case is that the two velocity distribution components 

don't change in the same way. Temperature profiles 

are seen to exhibit minor behavior for the C-variations 

in Fig. 2c. This suggests that the additive charac-

teristic parameter (length), C, is not the only factor 

influencing the rate of heat transfer. Comparable 

outcomes (shown in Fig. 3a and 3b) are discovered to 

be relevant for the water scenario as well (Pr = 7.0). 

The fixed values of controlling parameters  and B are 

15
0
 and 1 respectively. In the case of temperature 

profiles (Fig. 3c) the additive characteristic parameter 

(length) C shows its remarkable change for water (Pr 

= 7.0) than air (Pr = 0.72). Temperature decreases 

gradually with the increasing values of C when 

another controlling parameter ( = 15
0
 and B=1.0) 

remain fixed. Fig. 4a and 4b displayed the dimen-

sionless velocity distributions along u,v-directions for 

several values of C also the fixed values of controlling 

parameters. The physical meaning of Fig. 4a, 4b are 

same as 2a, 2b and if Fig. 4c is compared with 2c we 

have discerned the same rule. Fig. 6a and 6b 

respectively show the fluctuation of skin friction (𝐹′0′ (0), 𝑆′0′ (0)) and the heat transfer coefficient (−𝜃0′ (0)) for the additive characteristic length para-

meter C and Pr=7.0. Once more Fig.7a and 7b 

respectively show the fluctuation of skin friction (𝐹′0′ (0), 𝑆′0′ (0)), and Fig. 7c shows the heat transfer 

coefficient (−𝜃0′ (0))  for the change of the additive 

characteristic length parameter C and Pr=0.72. 

http://www.universepg.com/


Alam et al., / International Journal of Material and Mathematical Sciences, 6(3), 48-61, 2023 

Universe PG l www.universepg.com                                                                                                                                       57 

 
 

  

 

 

Fig. 2a, Fig. 2b and Fig. 2c: are the dimensionless u, v-velocity distribution and dimensionless 

temperature distributions for several values of C = (0.3, 0.5, 0.7, 0.9, 1.0) and the fixed values of Pr = 

0.72, 𝛿 = 15° and B=1.0; for the equation of zero order (37). 
 

 

                           

 

 

 

Fig. 3a, Fig. 3b and Fig. 3c: are the dimensionless u-velocity, v-velocity distribution and dimensionless 

temperature distributions for several values of C = (0.1,0.3,0.5,0.7,0.9,1.0) and the fixed values of 

Pr = 7.0, 𝛿 = 15° and B=1.0; for the equation of zero order (37). 
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Fig. 4a, Fig. 4b and Fig. 4c: are the dimensionless u-velocity, v-velocity distribution and dimensionless 

temperature distributions for several values of C = (0.25, 0.45, 0.65, 0.75, 0.95) and the fixed values of 

Pr = 0.72, 𝛿 = 15° and B=1.0; for the equation of zero order (37). 
 

 

 

 

 

 

Fig. 5a, Fig. 5b and Fig. 5c: are the dimensionless u-velocity, v-velocity distribution and dimensionless 

temperature distributions for several values of C = (0.2, 0.4, 0.6, 0.8, 0.9, 1.0) and the fixed values of Pr 

=7.0, 𝜹 = 𝟏𝟓°and B=1.0; for the equation of zero order (37). 
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Fig. 6a, Fig. 6b and Fig. 6c: are the skin friction factors along u-direction, v-direction and Heat 

transfer coefficient against C = (0.0 to 1.0), Prandlt’s number Pr =7.0, B=1.0 for the equation zero 

order (37). 
 

 

 

  

 

 

 

 

 
Fig.7a, Fig.7b and  Fig.7c: are the skin friction factors along  u-direction, v-direction and Heat 

transfer coefficient against C = (0.0 to 1.0),  Prandlt’s  number Pr = 0.72, B=1.0 for the equation zero 

order (37) 
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Table 2: The influence of skin friction factors and 

heat transfer coefficient for Pr=7.0, B=1.0 and 

=15
0
. 

 Table 3: The influence of skin friction factors and 

heat transfer coefficient for Pr=0.72, B=1.0 and 

=15
0
.
 

C                    0
0
F  0

0
S   00    C                 0

0
F  0

0
S   00   

0.0                 0.46261               1.62559   

1.08471 

0.1                 0.43051               1.52407   

1.16531 

0.2                 0.40476               1.45042   

1.23114 

0.3                 0.38474               1.38781   

1.28912 

0.4                 0.36821               1.33662   

1.34031 

0.5                 0.35442               1.29315   

1.38648 

0.6                 0.34274               1.25531   

1.42863 

0.7                 0.33263               1.22188   

1.46745 

0.8                 0.32390               1.19230   

1.50350 

 
0.0     0.56560                1.94367             0.78953 

0.1     0.54109                1.85756             0.83939 

0.2     0.51222                1.77096             0.88448 

0.3     0.47852                1.72257             0.92012 

0.4            0.45802                1.66199             0.95562         

0.6     0.42697                1.56082             1.01790 

0.7            0.41479                1.51922             1.04537 

0.8     0.41104                1.45956             1.07113 

0.9   0.40033                1.42685             1.09211 

 

The influence of skin friction factors and heat 

transfer coefficient is shown in numerical Table 2 

with variations in C and Pr = 7.0,  = 15
0
, B = 1.0, 

and other fixed regulating parameters. The impacts 

of skin friction factors and heat transfer coefficient 

with adjustment of the additive characteristic length 

parameter C and other fixed regulating parameters 

are also shown for air in numerical Table 3. 
 

CONCLUSION: 

The square side flat surface has its diagonal vertical 

for  = 45
0
 and C = 1.0. Here, in this arrangement of 

natural flow, F and S become identical, and the u- 

and v-momentum equations likewise coincide. The 

v-velocity component is more vertical than the u-

velocity component here, when =15
0
, i.e., one of the 

y-direction edges forms an angle  with the vertical. 

Takes a higher value than for the same values of C 

because of this. The results of the current 

investigation are consistent with those of Ackroyd, 

(1974) for zero order similarity solutions with  = 

90
0
 and C = 0. The identical result as Gebhart, 

(1962) is obtained once more when B=1.0, C = 0, 

and  = 90
0
. We find that, under the influence of the 

additive characteristic length C and acute angle 

=15
0
, the skin friction factors and heat transfer 

coefficient for zeroth order differ slightly from those 

of Ackroyd, (1974) and Gebhart, (1962). 
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