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ABSTRACT 

In this paper, finite volume method has been used to investigate one dimensional conductive heat transfer 

throw a uniform plane wall. Then the step by step procedures of this numerical solution are described and 

implemented in a real world problem where tri-diagonal matrix algorithm and Gaussian elimination matrix 

method are applied to solve the system of our discretized algebraic system of equations. Finally, to check the 

accuracy of our method, a comparison between the numerical solution obtained by finite volume techniques 

and exact solution is presented which show a minimum error compared to other existing methods. 

Keywords: Computational fluid dynamics, Finite volume method, and Tri-diagonal matrix algorithm. 

1. INTRODUCTION: 

Nowadays, to investigate the mass, momentum, and 

heat transfer phenomena, computational fluid 

dynamics (CFD) study numerical solutions which is 

associated with the phenomena of thermodynamics, 

turbo machinery, chemical manufacturing, power 

generation, weather simulation,  biological enginee-

ring, meteorology, aerospace, reaction chemistry, 

predicting fluid flow and heat transfer (Islam et al., 

2019). Though the fundamental source of almost all 

CFD problems is Navier-Stokes equations which 

describe many single-phase (liquid or gas, but not 

both) fluid flows. 

Recently, due to the revolution of computer 

technology, abundant computational grid techniques 

have been developed which is very efficient to solve 

numerous engineering problems (Cheniguel and 

Reghioua, 2013; Chuathong and Toutip, 2011). 

Among these numerical grid techniques, finite 

difference method (FDM) is used as a common 

numerical technique to solve numerous engineering 

problems (Lau and Kuruganty, 2010). Again, finite 

element method (FEM) is another kind of commonly 

used numerical technique which has been applied to 

solve many heat transfer problems (Patil and Prasad, 

2013). A generalized transfer equation for a 

dependent variable 𝜙 which can be mass, 

concentration, heat and momentum is given by 

Patankar (1980), where discretization technique is 

applied for CFD analysis (Islam and Hossain, 2019). 

Moreover, the finite volume method (FVM) is 

becoming most popular numerical technique which 

is commonly used in commercial CFD software such 

as COMSOL Multiphysics (Versteeg and 

Malalasekera, 2007). Though to solve any problem 

these three methods have its own merits besides its 

demerits, FVM technique is one of the utmost 

flexible and multipurpose techniques to solve CFD 

(Uddin et al., 2020). In this paper, we have described 

an engineering problem by the point of view of 

FVM. Due to its wide-spread popularity in CFD, this 

method has been applied previously in different 

mechanical engineering problem as like thermo 

elastic and linear elastic problems (Berezovski and 
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Maugin, 2001; Demirdžić and Muzaferija, 1994; and 
Jasak and Weller, 2000). 

The rest of our paper is prepared as follows. A short 

review of FVM with the help of Tri-Diagonal Matrix 

Algorithm TDMA is given in Section 2. In Section 

3, the numerical solutions obtained by this technique 

is given where a comparison between exact and our 

numerical solutions is also described. Finally, in 

Section 5 we have concluded this paper. 

2. FINITE VOLUME METHOD: 

Consider the steady state diffusion of a property 𝑇 in 

a one-dimensional domain defined in Fig 1. The 

process is governed by 𝑑𝑑𝑥 (𝜓 𝑑𝑇𝑑𝑥) + 𝑞 = 0                           (1) 

 

Where 𝜓 is the thermal connectivity, 𝑇 is the 

temperature and 𝑞 is the source term (i.e., the rate of 

heat generation per unit volume).  

2.1 Grid Generation 

In the finite volume method first of all, we have to 

divide the domain into discrete control volumes. Let 

us consider a number of nodal points in the domain 

space from 𝐴 to 𝐵. The boundaries (or faces) of 

control volumes are positioned mid-way between 

adjacent nodes. Thus each node is surrounded by a 

control volume or cell. Today it is common practice 

to set up control volumes near to the edge of the 

domain in such a way where the physical boundaries 

coincide with the control volume boundaries. At this 

point it is appropriate to establish a system of 

notation that can be used in future developments.  
 

 

Fig 1: Grid point generation for finite volume method with control volume. 

A general nodal point is identified by 𝑂 and its 

neighbor’s nodes to the north and south are 

represented by 𝑁 and 𝑆 respectively. The south side 

control volume face is mentioned by 𝑠 and the north 

side face of the control volume is mentioned to by 𝑛. 

The distances between the nodes 𝑂 and S, and 

between nodes N and 𝑂 are represented by 𝛿𝑥𝑂𝑆 and 𝛿𝑥𝑁𝑂 respectively. In the same way, distances 

between point 𝑂 and face s is denoted by 𝛿𝑥𝑂𝑠 and 

distances between face n and point 𝑂 is denoted 

by 𝛿𝑥𝑛𝑂. 

2.2 Discretization 

To discretize the governing equation, we will 

integrate the governing equation (1) over the control 

volume at its nodal point P. ∫ 𝑑𝑑𝑥 (𝜓 𝑑𝑇𝑑𝑥)𝑑𝑉 + ∫ 𝑞 𝑑𝑉∆𝑉 = 0∆𝑉  

Then we get, 

(𝜓𝐴 𝑑𝑇𝑑𝑥)𝑠 − (𝜓𝐴 𝑑𝑇𝑑𝑥)𝑛 + 𝑞𝐴 𝛿𝑥 = 0               (2) 

Where 𝐴 the cross-sectional area of the control 

volume face is, ∆𝑉 is the volume and 𝑞 is the source 

term over the control volume. This is a very 

attractive feature of this finite volume method where 

the discretized equation contains a clear physical 

interpretation. Equation 2 states that the diffusive 

flux of 𝑇 leaving the south face minus the diffusive 

flux of 𝑇 entering the north face is equal to the 

generation of 𝑇 over the control volume. In order to 

derive useful forms of the discretized equations, the 

interface diffusion coefficient 𝜓 and the gradient 𝑑𝑇𝑑𝑥  at west 𝑛 and east 𝑠 are required. And the 

diffusive flux terms are evaluated as - (𝜓𝐴 𝑑𝑇𝑑𝑥)𝑠 = 𝜓𝑠𝐴 (𝑇𝑆−𝑇𝑂𝛿𝑥𝑂𝑆 )             (3) 

(𝜓𝐴 𝑑𝑇𝑑𝑥)𝑛 = 𝜓𝑛𝐴 (𝑇𝑂−𝑇𝑁𝛿𝑥𝑁𝑂 )           (4) 
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For practical situations, the source term 𝑞 may be a 

function of the dependent variable. By substituting 

the values of equations (3) and (4) into equation (2), 

we get 𝜓𝑠𝐴 (𝑇𝑆−𝑇𝑂𝛿𝑥𝑂𝑆 ) − 𝜓𝑛𝐴 (𝑇𝑂−𝑇𝑁𝛿𝑥𝑁𝑂 ) + 𝑞𝐴 𝛿𝑥 = 0      (5) 

By rearranging equation (5), we can write (𝜓𝑠 𝐴𝛿𝑥𝑂𝑆 + 𝜓𝑛 𝐴𝛿𝑥𝑁𝑂)𝑇𝑂 = (𝜓𝑛 𝐴𝛿𝑥𝑁𝑂)𝑇𝑁 + (𝜓𝑠 𝐴𝛿𝑥𝑂𝑆) 𝑇𝑆        +𝑞𝐴 𝛿𝑥                                                            (6) 

By representing the coefficient of 𝑇𝑂, 𝑇𝑁 and 𝑇𝑆 

as 𝑎𝑂, 𝑎𝑁 and 𝑎𝑆 respectively then the equation (6) 

can be written as  𝑎𝑂𝑇𝑂 = 𝑎𝑁  𝑇𝑁 + 𝑎𝑆𝑇𝑆 + 𝑆𝑢                              (7)  

Where (here 𝛿𝑥𝑁𝑂 = 𝛿𝑥𝑂𝑆 = 𝛿𝑥) 𝒂𝑵 𝒂𝑺 𝒂𝑶 𝑺𝑶 𝑺𝒖 𝝍𝒏 𝑨𝜹𝒙  
𝜓𝑠 𝐴𝛿𝑥  

𝑎𝑁 + 𝑎𝑆 − 𝑆𝑂 0 𝑞𝐴 𝛿𝑥 

But there will be a little difference between the 

boundary conditions at first node (at point 𝐴) and for 

last node (at point 𝐵). In this case, linear 

approximation will be use between the adjacent 

nodal point and the boundary. For this reasons, we 

will introduce the linear approximation for 

temperatures between 𝐴 and 𝑂 as like: 𝜓𝑠𝐴 (𝑇𝑆 − 𝑇𝑂𝛿𝑥 ) − 𝜓𝐴 𝐴 (𝑇𝑂 − 𝑇𝐴𝛿𝑥/2 ) + 𝑞𝐴 𝛿𝑥 = 0 

⟹ (𝜓𝑠 𝐴𝛿𝑥 + 𝜓𝐴 𝐴𝛿𝑥2 )𝑇𝑂 = (𝜓𝑠 𝐴𝛿𝑥 ) 𝑇𝑆 + (𝜓𝐴 𝐴𝛿𝑥2 )𝑇𝐴 

                                              +𝑞𝐴 𝛿𝑥                     (8)  

This can be rewrite as,  𝑎𝑂𝑇𝑂 = 𝑎𝑁𝑇𝑁 + 𝑎𝑆𝑇𝑆 + 𝑆𝑢                           (9)  

Where  𝒂𝑵 𝒂𝑺 𝒂𝑶 𝑺𝑶 𝑺𝒖 𝟎 𝜓𝑠 𝐴𝛿𝑥  
𝑎𝑁 + 𝑎𝑆− 𝑆𝑂 

−𝜓𝐴 𝐴𝛿𝑥/2 (𝜓𝐴 𝐴𝛿𝑥/2)𝑇𝐴+ 𝑞𝐴 𝛿𝑥 

Similarly, we will introduce the linear 

approximation for temperatures between 𝑂 and 𝐵 as like: 

𝜓𝐵 𝐴 (𝑇𝐵−𝑇𝑂𝛿𝑥2 ) − 𝜓𝑛𝐴 (𝑇𝑂−𝑇𝑁𝛿𝑥 ) + 𝑞𝐴 𝛿𝑥 = 0   (10)  

⟹ (𝜓𝐵 𝐴𝛿𝑥2 + 𝜓𝑛 𝐴𝛿𝑥 )𝑇𝑂 = 

(𝜓𝑛 𝐴𝛿𝑥 )𝑇𝑁 +(𝜓𝐵 𝐴𝛿𝑥2 )𝑇𝐵 + 𝑞𝐴 𝛿𝑥 

This can be rewrite as,  𝑎𝑂𝑇𝑂 = 𝑎𝑁𝑇𝑁 + 𝑎𝑆𝑇𝑆 + 𝑆𝑢                          (11)  

Where  𝒂𝑵 𝒂𝑺 𝒂𝑶 𝑺𝑶 𝑺𝒖 𝝍𝒏 𝑨𝜹𝒙  
0 𝑎𝑁 + 𝑎𝑆− 𝑆𝑂 

−𝜓𝐵 𝐴𝛿𝑥/2 (𝜓𝐵 𝐴𝛿𝑥/2)𝑇𝐵+ 𝑞𝐴 𝛿𝑥 

When we will get the all discretized equations from 

equation (7), (9) and (11), to solve a problem we 

have to set up at each of the nodal points. The 

resulting system of linear algebraic equations will be 

solved to obtain the distribution of the property 𝑇 at 

each nodal point. There are different types of matrix 

solution technique (Gaussian Elimination Method, 

Tri-Diagonal Matrix Algorithm, Gauss-Jordan 

Elimination, etc.) exist which can be used to solve 

the system of linear algebraic equations. From this 

system, we will use Gaussian Elimination (GE) 

Method (Sasaki and Murao, 1982) and Tri-Diagonal 

Matrix Algorithm (TDMA) (El-Mikkawy, 2004) to 

find the values of temperature distributions 𝑇. 

3. RESULT AND DISCUSSION: 

Consider a plane wall whose thickness is 1𝑚 (Fig 

2) and this has a source effect in this heat conduction 

system. The two ends of this wall maintained at 

constant temperature as like 300°𝐶 and 800°𝐶 respectively. The thermal conductivity 𝜓 of 

this wall is equals to 0.5 𝑊/𝑚.𝐾, heat generation 𝑞 =  1000 𝑊/𝑚3, and the cross-sectional area 𝐴 is 10 𝑚2. The main goal of this work is to calculate the 

temperature distributions of this wall by using our 

control volume method where we will consider the 

dimensions of the 𝑌-and 𝑍-directions are so large. 

For this reason the temperature gradients has 

significant change along the X -direction only. 
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Fig 2: A uniform plane wall of 1𝑚 length. 

3.1 Numerical Solution by FVM 

First of all, we have to divide the whole length of the 

wall into some control volume (along only 𝑋-

directions). In this work, we will calculate the 

temperature distribution in five internal points. That 

is, the difference between two control volumes 

is 0.2 𝑚 (since total length of the wall is 1𝑚, so 𝛿𝑥 = 1/5 𝑚=0.2 𝑚). 

 

Fig 3: Grid point generation of total domain with control volume and half control volume. 

For our given problem (one-dimensional heat 

conduction) governing equation is, 

 𝑑𝑑𝑥 (𝜓 𝑑𝑇𝑑𝑥) + 𝑞 = 0                                            (12) 

Where, 𝜓 is the thermal conductivity, 𝑇 is the 

temperature and 𝑞 is the source term. To get the 

discretization equation, we have to integrate 

equation (12) over the control volume. After 

simplifying (which has already described in Section 

2) we get as like equation (6), (𝜓𝑠 𝐴𝛿𝑥𝑂𝑆 + 𝜓𝑛 𝐴𝛿𝑥𝑁𝑂)𝑇𝑂 = (𝜓𝑛 𝐴𝛿𝑥𝑁𝑂)𝑇𝑁 + (𝜓𝑠 𝐴𝛿𝑥𝑂𝑆) 𝑇𝑆                                        +𝑞𝐴 𝛿𝑥                 (13) 

By representing the coefficient of 𝑇𝑂, 𝑇𝑁 and 𝑇𝑆 as 𝑎𝑂, 𝑎𝑁 and 𝑎𝑆 respectively then the equation (13) 

can be written as 𝑎𝑂𝑇𝑂 = 𝑎𝑁  𝑇𝑁 + 𝑎𝑆𝑇𝑆 + 𝑆𝑢                   (14)  

Where (here 𝛿𝑥𝑁𝑂 = 𝛿𝑥𝑂𝑆 = 𝛿𝑥) 𝒂𝑵 𝒂𝑺 𝒂𝑶 𝑺𝑶 𝑺𝒖 𝝍𝒏 𝑨𝜹𝒙  
𝜓𝑠 𝐴𝛿𝑥  

𝑎𝑁 + 𝑎𝑆 − 𝑆𝑂 0 𝑞𝐴 𝛿𝑥 

 

In this problem, the given data are  

𝑳 = 𝟏𝒎 𝜹𝒙𝑵𝑶 = 𝜹𝒙𝑶𝑺 = 𝜹𝒙= 𝟏𝟓𝒎 = 𝟎. 𝟐 𝒎 

𝝍𝒏 = 𝝍𝒔 = 𝝍 = 𝟎. 𝟓 𝑾/𝒎.𝑲 

 𝒒 = 𝟏𝟎𝟎𝟎 𝑾/𝒎𝟑 𝑨𝒏 = 𝑨𝒔 = 𝑨= 𝟏𝟎 𝒎𝟐 

𝑇𝐴 = 300°𝐶 𝑇𝐵 = 800°𝐶 

By using these values, we get  𝑎𝑁 = 𝑎𝑆 = 25, 𝑎𝑂 =50, and 𝑆𝑢 = 2000. Again by using the value of  𝑎𝑁, 𝑎𝑆, 𝑎𝑂 and 𝑆𝑢 into equation (14), we get the 

discretized equation for the nodal points 2, 3, and 4 

as,  50 𝑇2 = 25 𝑇1 + 25 𝑇3 + 200050 𝑇3 = 25 𝑇2 + 25 𝑇4 + 200050 𝑇4 = 25 𝑇3 + 25 𝑇5 + 2000}             (15) 

On the other hand, at nodal point 1 (at point 𝐴) 

which has already described in Section 2 the 

coefficients will be, 𝒂𝑵 𝒂𝑺 𝒂𝑶 𝑺𝑶 𝑺𝒖 𝟎 𝜓𝑠 𝐴𝛿𝑥  
𝑎𝑁 + 𝑎𝑆− 𝑆𝑂 

−𝜓𝐴 𝐴𝛿𝑥/2 (𝜓𝐴 𝐴𝛿𝑥/2)𝑇𝐴+ 𝑞𝐴 𝛿𝑥 
 

By using the given values, we get 𝑎𝑁 = 0, 𝑎𝑆 =25, 𝑆𝑂 = 50, 𝑎𝑂 = 75, and 𝑆𝑢 = 17000. Then the 

equation (14) can be written as,  
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75 𝑇1 = 25 𝑇2 + 17000                              (16)  

Which is the discretized equation for the nodal point 

1. Similarly, at nodal point 5 which are a half control 

volume and the coefficients will be (which has 

already described in Section 2), 𝒂𝑵 𝒂𝑺 𝒂𝑶 𝑺𝑶 𝑺𝒖 𝝍𝒏 𝑨𝜹𝒙  
0 𝑎𝑁 + 𝑎𝑆− 𝑆𝑂 

−𝜓𝐵 𝐴𝛿𝑥/2 (𝜓𝐵 𝐴𝛿𝑥/2)𝑇𝐵+ 𝑞𝐴 𝛿𝑥 

By using the given values, we get of 𝑎𝑁 = 25,  𝑎𝑆 = 0, 𝑆𝑂 = 50, 𝑎𝑂 = 75, and 𝑆𝑢 = 42000. Then 

the equation (14) can be written as,  75 𝑇5 = 25 𝑇4 + 42000                                     (17)  

Which is the discretized equation for the nodal point 

5. 

Therefore, the set of discretized equations are: 75 𝑇1 = 25 𝑇2 + 1700050 𝑇2 = 25 𝑇1 + 25 𝑇3 + 200050 𝑇3 = 25 𝑇2 + 25 𝑇4 + 200050 𝑇4 = 25 𝑇3 + 25 𝑇5 + 200075 𝑇5 = 25 𝑇4 + 42000 }  
            (18) 

This system of algebraic linear equation can be 

solved by different method such as TDMA or 

Gaussian elimination (GE) method on by hand. But 

in this we have solved this system of linear equations 

easily by MATLAB. Then we get our temperature 

distribution as, 

[  
  𝑇1𝑇2𝑇3𝑇4𝑇5]  
  = [   

 450670810860850]  
  
 

3.2 Exact Solution 

Our governing equation is 𝑑𝑑𝑥 (𝜓 𝑑𝑇𝑑𝑥) + 𝑞 = 0 where 

boundary conditions, 𝑇𝐴 = 300°𝐶 at 𝑥 = 0 𝑚 , and  𝑇𝐵 = 800° 𝐶, 𝑥 = 1 𝑚. By simplifying this we get 

our general solution, 𝑇 = 𝐶𝑥 − ( 𝑞2𝜓) 𝑥2 +𝐷                                   (19) 

Where 𝐶 and 𝐷 are integral constant. By applying 

the boundary condition we get 𝐶 = 1500 and 𝐷 =300, so the complete solution is,  𝑇 = 1500𝑥 − ( 𝑞2𝜓)𝑥2 + 300                       (20) 

For different values of 𝑥, we will get the temperature 

distribution at different nodal points (Table 1). 

 
(a) 

 
(b) 

Fig 4: Graphical representation of (a) Numerical 

Solution, and (b) Exact Solution. 

On the other hand, Fig 4 shows graphical 

representations of our numerical solution by FVM 

and exact/analytical solution. Again, Table 2 shows 

the details presentation of our work where FVM has 

completed by TDMA and Gaussian elimination (GE) 

method. Though the two methods show the same 

result but these numerical solutions have some 

errors (𝐸𝑥𝑎𝑐𝑡 𝑆𝑜𝑙𝑡𝑢𝑡𝑖𝑜𝑛−𝑁𝑢𝑚𝑒𝑟𝑖𝑐𝑎𝑙 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛𝐸𝑥𝑎𝑐𝑡 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛 ).  
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But if we divide the domain into more and more 

control volume, the error will be minimized than the 

before. 

Table 1: Exact/Analytic solutions for temperature 

distributions. 𝑻𝟏 𝑻𝟐 𝑻𝟑 𝑻𝟒 𝑻𝟓 

440 660 800 860 840 

Table 2: Comparison table between numerical and 

exact solutions. 
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TDMA GE 

1 0.1 440 450 450 2.27 

2 0.3 660 670 670 1.51 

3 0.5 800 810 810 1.25 

4 0.7 860 870 870 1.16 

5 0.9 840 850 850 1.19 

 

 

Fig 5: Graphical comparison between control 

volume method and exact/analytic solution. 

4. CONCLUSION: 

In this work, to investigate one dimensional 

conductive heat transfer in a uniform plane wall, we 

have used the finite volume method (FVM). 

Obtaining discretized equation by FVM, we have 

applied Tri-Diagonal Matrix Algorithm (TDMA) 

and Gaussian elimination (GE) method. Finally, with 

the help of MATLAB R2014a, we represent a 

tabular and a graphical comparison between our 

numerical solution and exact solutions. The FVM 

has given outstanding results which have few errors 

with respect to exact solution but this error can be 

minimized by taking more and more grid points. 

That is, this method is very effective, accurate, 

reliable and easier to appliance in MATLAB or any 

other programming languages compared to the other 

exorbitant methods. 
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Nomenclature 𝐴 Control Volume boundary Area (𝑚2) 𝑁 North FVM node 𝑛 North Control Volume boundary 𝑆 South FVM node 𝑠 South Control Volume boundary 𝑂 Central Control Volume node 𝜓 Thermal conductivity (𝑊 𝑚−1𝐾−1) 𝑇 Temperature (°𝐶) 𝑎 Coefficient of FVM (𝑊𝐾−1) 𝑞 Heat generation (𝑘𝑊 𝑚−3) 𝑛 Node 𝛿𝑥 Distance between nodes (m) 𝑇𝐴 Refers to temperature at boundary node A 𝑇𝐵 Refers to temperature at boundary node B 

  
29 

http://www.universepg.com/


Islam et al., / Australian Journal of Engineering and Innovative Technology, 2(2), 24-30, 2020 

UniversePG l www.universepg.com 

7. REFERENCES: 

1) Berezovski, A. and Maugin, G.A., 2001. 

Simulation of thermo elastic wave 

propagation by means of a composite wave-

propagation algorithm. Journal of 

Computational Physics, 168(1), 249-264. 

https://doi.org/10.1006/jcph.2001.6697 

2) Cheniguel, A. and Reghioua, M., 2013, 

October. On the numerical solution of three-

dimensional diffusion equation with an 

integral condition. In Proceedings of the 

World Congress on Engineering and 

Computer Science, 2, 23-25. 

3) Chuathong, N. and Toutip, W., 2011. An 

accuracy comparison of solutions between 

Boundary element method and mesh less 

method for Laplace equation. In Proceedings 

of the 16th Annual Meeting in Mathematics 

(AMM2011), 29, 42. 

4) Demirdžić, I. and Muzaferija, S., 1994. Finite 
volume method for stress analysis in complex 

domains. International Journal for Numerical 

Methods in Engineering, 37(21), 3751-3766. 

https://doi.org/10.1002/nme.1620372110 

5) El-Mikkawy, M.E., 2004. A fast algorithm 

for evaluating nth order tri-diagonal 

determinants. Journal of computational and 

applied mathematics, 166(2), 581-584.  

https://doi.org/10.1016/j.cam.2003.08.044 

6) Islam KA, Deeba F, and Hassan MKA. 

(2019). Dust ion acoustic solitary waves in 

multi-ion dusty plasma system with adiabatic 

thermal change, Aust. J. Eng. Innov. 

Technol., 1(5), 1-5.  

https://doi.org/10.34104/ajeit.019.0105  

7) Islam MT and Hossain MS. (2019). 

Hybridization of vigenere technique with the 

collaboration of RSA for secure 

communication, Aust. J. Eng. Innov. 

Technol., 1(6), 6-13.  

https://doi.org/10.34104/ajeit.019.06013  

8) Jasak, H. and Weller, H.G., 2000. 

Application of the finite volume method and 

unstructured meshes to linear 

elasticity. International journal for numerical 

methods in engineering, 48(2), 267-287. 

9) Lau, M.A. and Kuruganty, S.P., 2010. 

Spreadsheet implementations for solving 

boundary-value problems in 

electromagnetics. Spreadsheets in 

Education, 4(1), 1-18. 

10) Patankar, S.V., 1980. Numerical Heat 

Transfer and Fluid Flow; Series in 

Computational and Physical Processes in 

Mechanics and Thermal Sciences. Taylor & 

Francis, 29, 33-34. 

11) Patil, P.V. and Prasad, J.K., 2013. Solution of 

laplace equation using finite element 

method. International Journal of Science, 

Spirituality, Business, and Technology, 2(1), 

40-46. 

12) Sasaki, T. and Murao, H., 1982. Efficient 

Gaussian elimination method for symbolic 

determinants and linear systems. ACM 

Transactions on Mathematical Software 

(TOMS), 8(3), 277-289. 

https://doi.org/10.1145/356004.356007 

13) Uddin MM, Karim R, Kaysar MA, Dayan 

MAR, and Islam KA. (2020). Low-cost jute-

cotton and glass fibre reinforced textile 

composite sheet, Int. J. Mat. Math. Sci., 2(1), 

1-7. https://doi.org/10.34104/ijmms.020.01007 

14) Versteeg, H.K. and Malalasekera, W., 

2007. An introduction to computational fluid 

dynamics: the finite volume method. Pearson 

education. 

  

 

 

 

Citation: Islam S, Islam MS, and Mandal S. (2020). One dimensional heat transfer through a uniform plane 

wall by using finite volume method, Aust. J. Eng. Innov. Technol., 2(2), 24-30.  

https://doi.org/10.34104/ajeit.020.024030 

30 

http://www.universepg.com/
https://doi.org/10.1006/jcph.2001.6697
https://doi.org/10.1002/nme.1620372110
https://doi.org/10.1016/j.cam.2003.08.044
https://doi.org/10.34104/ajeit.019.0105
https://doi.org/10.34104/ajeit.019.06013
https://doi.org/10.1145/356004.356007
https://doi.org/10.34104/ijmms.020.01007
https://doi.org/10.34104/ajeit.020.024030

