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ABSTRACT  

In Newtonian mechanics, space and time are separate but in General Relativity is unified. It is considered that 

the space in the weak-field approximation is quasi-static and it arises from a perfect field whose particles have 

very small velocity in comparison to light velocity in this coordinate system and the metric is a gravitational 

potential tensor of rank two which implies the field of empty space. If each point of an area in N-dimensional 

space there existed a corresponding definite tensor, where the components of the tensor are the function of 

space and space acts as the strong or weak gravitational field. 
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INTRODUCTION:  

General Relativity is the relativistic theory of strong 

gravitational space whereas the special theory of 

relativity only accounts for the weak field of the region 

which is called free space, where gravitational effects 

can be neglected (Veltman, 1975; Richard, 1983; 

Resnick, 1968; Hughton, 1990). In those systems the 

law of inertia holds good and the physical laws retain 

the same form (Alam and Alam, 2020). In some freely 

- declining position and make a large structure out of 

the solid bar, at a certain interval off, the freely-

declining body will have resembled that they are 

accelerating with regard to this frame of reference and 

according to Einstein’s equivalence principle, the 

physical laws of nature convert to those of Newtonian 

Relativity in an infinitesimal region of space-time 

which is known to non-relativistic limit (Narlikar, 

1978; Boss, 1980; Relativity, 1964; Stephani, 2004). 

These considerations lead to the vital concept of 

gravity force which is not actually a force but a 

manifestation of space-time curvature. The crucial 

difference between strong and weak gravitational fields 

is that in a field space the result of parallel transporting 

a vector from one point to another will depend on the 

path taken between the points (Rinder, 2001; Ohanian 

and Ruffini, 1994).  
 

In the transformation of vectors in a weak field, initial 

and final vectors remain the same at a time. But in a 

strong field initial and final vectors are different. The 

change of the vector 𝐴𝜇 is 𝑑𝐴𝜇 which can be divided 

into two components. One component 𝜕𝐴𝜇 due to the 

change of direction of the axis of coordinates and 

another is 𝐴𝜇due to the change of the intrinsic value 

of the vector (Caroll, 1997; Boss, 1980).   
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 i.e. 𝑑𝐴𝜇 = 𝜕𝐴𝜇 + 𝐴𝜇 
 

In weak gravitational field there is no changed of 

vector with the change of axis. Hence,  𝜕𝐴𝜇 =0. Which    

implies that the direction of vector is constant in weak 

field and the metric is the function of gravitational 

potential (Will, 2018). 
 

Coordinate System 

To explain the motion of a particle in Newtonian 

mechanics, a few numbers of coordinate systems are 

used. To take the distance between two adjacent points 

is the best medium to identify the coordinate system 

and this interval between two adjacent points is called a 

metric or line element. In three dimensional space, the 

interval of the points- 
 (𝑥1, 𝑥2, 𝑥3), and(𝑥1 + 𝑑𝑥1, 𝑥2 + 𝑑𝑥2, 𝑥3 + 𝑑𝑥3) 

 

In Cartesian coordinates, system is given by (Stephani, 

2004; Goyal and Gupta, 1942) 
 

  𝑑𝑠2 = (𝑑𝑥1)2 + (𝑑𝑥2)2 + (𝑑𝑥3)2.                 (1) 

In cylindrical coordinates (𝜌, 𝜑, 𝑧) it is 

  𝑑𝑠2 = 𝑑𝜌2 + 𝜌2𝑑𝜑2 + 𝑑𝑧2.                     (2) 

And in spherical polar coordinates (𝑟, 𝜃, 𝜑) it is 

    𝑑𝑠2 = (𝑑𝑟)2 + (𝑟𝑑𝜃)2 + (𝑟 sin 𝜃 𝑑𝜑)2           (3) 

 

So, in any coordinate system the square of the space 

between two points be - 
  𝑑𝑠2 = 𝘨𝜇𝜈(x)𝑑𝑥𝜇𝑑𝑥𝜈;                      (4) 

[𝜇, 𝜈 = 1, 2, 3] 

 

Now, In Cartesian coordinates:  𝘨11 = 𝘨22 = 𝘨33 = 1. 

 

In cylindrical coordinates: 

 𝘨11 = 𝘨33 = 1, 𝘨22 = 𝜌. 

 

In spherical polar coordinates:  

 𝘨11 = 1, 𝘨22 = 𝑟, 𝘨33 = 𝑟 sin 𝜃 

 

And the others are 𝘨𝑖𝑗 = 0 [for𝑖 ≠ 𝑗]. 

Here the form (4) is called fundamental metric form.  

Coordinate Transformations 

Suppose in two dimensional coordinates system the 

Cartesian and polar coordinate of a point are (𝑥, 𝑦) 

and (𝑟, 𝜃), then written the coordinate transformations 

are below (Ansari, 2020). 
 

   𝑥 = 𝑟 cos 𝜃 = 𝑓(𝑟, 𝜃),               (5) 

   𝑦 = 𝑟 sin 𝜃 = 𝑓(𝑟, 𝜃).                    (6) 

 

Inversely, 

   𝑟 = √𝑥2 + 𝑦2 = 𝐹(𝑥, 𝑦)                    (7) 

   𝜃 = tan−1 (𝑦𝑥) = 𝐹(𝑥, 𝑦).                   (8) 

From the above relations we see that a coordinate of 

one reference frame is the function of all coordinates of 

another frame of reference. Similarly, we can show the 

same transformation in 3-D system. In the basis of this 

concept into the N-dimensional system, if the 

coordinates of a point in two difference reference frame 

are - 
 

 (𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑁) and, 

 (𝑥1, 𝑥,2 𝑥3, … , 𝑥𝑁), 
Then we have N-independent relations (Caroll, 1997).     

 𝑥𝑖 = 𝑥𝑖(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑁),                   (9) 

Where, 𝑖 = 1, 2, 3, … , 𝑁.  
Inversely, 

 𝑥𝑖 = 𝑥𝑖(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑁).             (10) 

 

Differentiating (9) partially we get 

 𝑑𝑥𝑖 = 𝜕𝑥𝑖𝜕𝑥1 𝑑𝑥1 + 𝜕𝑥𝑖𝜕𝑥2 𝑑𝑥2 + ⋯ + 𝜕𝑥𝑖𝜕𝑥𝑁 𝑑𝑥𝑁,         (11) 

Or, 

 𝑑𝑥𝑖 = ∑ 𝜕𝑥𝑖𝜕𝑥𝑗 𝑑𝑥𝑗𝑁𝑗=1 .                        (12)

  

By using Einstein’s summation convention we have,  

 𝑑𝑥𝑖 = 𝜕𝑥𝑖𝜕𝑥𝑗 𝑑𝑥𝑗.                          (13)

  

Replacing the vector 𝑑𝑥𝑖
by  𝐴𝜇

 and  𝑑𝑥𝑗 by 𝐴𝜐 we 

have, 

 𝐴𝜇 = 𝜕𝑥𝜇𝜕𝑥𝜐 𝐴𝜐.                           (14) 
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Inversely,    

  𝐴𝜐 = 𝜕𝑥𝜐𝜕𝑥𝜇 𝐴𝜇 .                     (15) 

 

Relations (14) and (15) are defined to the trans-

formation of coordinates from one frame of reference 

to another.  
 

Manifolds:  

Manifold refers to the various types of surfaces such as 

the plane is two dimensional manifolds. A manifold is 

one of the most fundamental concepts in mathematics 

and physics. Consider the set U(P) which is the 

neighborhood of P and P is any point on the Manifold 

M which can be explained by the N number of 

elements (x
1
, x

2
, x

3
, ......... x

N
), Now, in Euclidean space 

the distance between two points PA and PB be (Foster 

and Nightingale, 1994; Caroll, 1997). 
 

  lAB =     212N

B

N

A

21

B

1

A XX........XX           (16) 
 

 
 

Fig 1: Two dimensional manifolds. 
 

Another point q and its neighborhood, open set U(q) 

can be explained by the N-number of real quantities 

(y
1
, y

2
, .... y

N
). Now the points of the common region of 

these two neighborhoods can be expressed through any 

of them coordinate systems. In this case, the coordinate 

transformation is - 
 

   y
i
 = y

i
 (x

1
, x

2
, x

3
, .... x

N
) [i = 1, 2, 3, .... N]      (17) 

 

The transformation from one coordinates system to 

another coordinates system is called one-one mapping 

or direct transformation. So, we can define the mani-

fold as a connected Housdorf space which is locally 

Euclidean.  
 

Space-time Metric:  

The special relativistic line element (or metric), when 

Cartesian coordinates (ct, x, y, z) are used, is given by    
 

  ds
2
=  dx


dx


= c

2
dt

2−dx
2 −dy

2−dz
2.
           (18) 

Where,  is the flat-space Minkowskian metric 

tensor. If the inertial coordinate frames will be changed 

into another then in Lorentz transformation, the space-

time metric (18) does not change (Stephani, 2004; Ellis 

and Williams, 1988). 
 

z

w

y'

y

x x'  
Fig 2: Inertial frame into a non-inertial frame and the 

revolution. 
 

Consider the changes from an inertial frame into a non-

inertial frame and the revolution is taken concerning 

the z-axis (Synge and Schild, 1949). Now, the 

conversion equations are - 
 

 
 𝑥 = 𝑥𝑐𝑜𝑠𝜔𝑡 −𝑦sinω𝑡𝑦 = 𝑥𝑠𝑖𝑛𝜔𝑡 + 𝑦cos𝜔𝑡𝑧 = 𝑧 ⟩                                (19) 

 

Where, 𝜔 is the angular velocity of rotation. From (19) 

we have,  

dx = dxcosωt − x𝜔sinωt dt−sinωtdy−y𝜔cosωt dt     (20) 
 

dy = sin𝜔t dx + x𝜔cos𝜔t dt+ cos𝜔t dy−y𝜔sin𝜔t dt   (21) 
 

 dz= dz.                                                                 (22) 
 

Putting these values in (18) we have, 
 𝑑𝑠2 = [𝑐2 − 𝜔2(𝑥′2 + 𝑦′2)]𝑑𝑡2+ 2𝜔𝑑𝑡(𝑦′𝑑𝑥′ − 𝑥′𝑑𝑦′)− (𝑑𝑥′ + 𝑑𝑦′ + 𝑑𝑧′)2 

    = g dx

dx

.
                                 (23) 

 

Where the components are, 
 

 𝘨00 = [𝑐2−𝜔2(𝑥′2+𝑦′2)]𝑐2 ,  𝘨11 = 𝘨22 = 𝘨33 − 1, 
 𝘨01 = 𝘨10 = 𝜔𝑦′,   𝘨02 = 𝘨20 = −𝜔𝑥. 
 

And all other components of g vanish and this is 

different from (18). In the general case, when none-

inertial coordinate frames are used, the line element 

will have following expression (Anderson, 1975). 
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 ds
2 
= 𝘨𝜇𝜈dx


dx


 .                             (24) 

Where, 𝘨𝜇𝜈(𝑥) are ten functions of, 

x (x
0
, x

1
, x

2
, x

3
) 

With 𝘨𝜇𝜈 = 𝘨𝜈𝜇. 
In Cartesian coordinates 

  x
0
 = ct, x

1 
= x, x

2
= y, x

3 
= z 

 

Now, we can use non-Cartesian coordinates and in that 

case, the coordinates x
1
, x

2
 and x

3
 describe curvilinear 

coordinates (Weinberg, 1972). The metric tensor g 

describes the none-inertial field of forces are equivalent 

to gravitational fields. So, the space-time metric in 

general relativity has the more general form given by 

(24), (Max, 1964). Here, 𝘨𝜇𝜈(𝑥) represents the gravi-

tational potential (field). Using tensor transformation 

we can show that, 
 

   𝘨̅𝜇𝜈(𝑥̅)𝑑𝑥̅𝜇𝑑𝑥̅𝜈 = 𝘨𝜇𝜈𝑑𝑥𝜇𝑑𝑥𝜈 = 𝑑𝑠2            (25)
 

 

Parallel Transformation of Vector and Covariant 

Derivative 
 

The concept of moving a vector along a path keeping 

constant all the while is known as parallel transport. To 

subtract of two vectors on a curve space they must be 

taken at the same position. Now, to bring one vector at 

the position of another vector there must be needed to 

the parallel transformation of that vector. Suppose a 

vector 𝐴𝜇 is taken from the position 𝑥𝜇 to the nearest 

position 𝑥𝜇 + 𝑑𝑥𝜇 and at this position the vector is 𝐴𝜇 + 𝑑𝐴𝜇.  
 

In Cartesian coordinates system the change of vector 𝑑𝐴𝜇 is zero, but in general curvilinear coordinate it is 

not zero (Stephani, 2004; Caroll, 1997).  
 

 
 

Fig 3: Parallel Transformation of Vector and Covariant 

Derivative. 

Newtonian Approximation  

Consider the motion of a test particle in case of a weak 

static field. The motion of a test particle is governed by 

geodesic equations as given below, 
 

   

                                                                     (26) 
 

Since the field is static, i.e. it does not Change with 

time. Hence velocity components can be taken as 

(Weinberg, 1972; Caroll, 1997). 
 

  
 𝑑𝑥1𝑑𝑠 , 𝑑𝑥2𝑑𝑠 , 𝑑𝑥3𝑑𝑠 = 0; and  𝑑𝑥0𝑑𝑠 = 1 

 

Our co-ordinates are Galilean co-ordinates 
 

  𝑥0 = 𝑐𝑡, 𝑥1 = 𝑥, 𝑥2 = 𝑦, 𝑥3 = 𝑧 
 

Now we use the metric 𝘨𝜇𝜈 for the curve space and the 

metric   for the flat space, then a weak static field as 

Characterized by taking  
 

  𝘨𝜇𝜈 + 1g+ 
2

2 g +...                     (27) 
 

Where the parameters ’s are taken to be small. 

Neglecting the 2
nd

 and higher order term of  we have 
  

  𝘨𝜇𝜈 ≈ 𝜂𝜇𝜈 + 𝜆1𝘨𝜇𝜈 = 𝜂𝜇𝜈 + ℎ𝜇𝜈 .                  (28) 
 

Where the quantities h= 1g are small but not so 

small that they may be neglected and  
 

  




















1-000

01-00

001-0

0001

  
                           (29)

 
We have, 

  𝜂00 = 1, 𝜂11 = 𝜂22 = 𝜂33 = −1 and, 

  𝜂𝜇𝜈 = 0 = 𝘨𝜇𝜈[For 𝜇 ≠ 𝜈]. 
Again,     

  ds
2
 = 𝗀μνdx


dx

 
gives 

   

    1 = 𝘨00 𝑑𝑥0𝑑𝑠 𝑑𝑥0𝑑𝑠 [∵  𝑑𝑥1𝑑𝑠 = 𝑑𝑥2𝑑𝑠 = 𝑑𝑥3𝑑𝑠 = 0] 
   

 

= (1 + h00) 

2

2 







ds

dt
c   

 [00 = 1, x
0
 = ct] 
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 

2

2 







ds

dt
c = (1 + h00)

-1 
= (1−ℎ00+ 

2

00h ...)
 

Neglecting the 2
nd

 and higher order term of ℎ00 
 

  

2









ds

dt
 1𝑐2 − ℎ00𝑐2                                       (30) 

 

Neglecting 
ℎ00𝑐2   as a very small quantity we have (Ellis 

and Williams, 1988; Goyal and Gupta, 1942). 
 
 

                                                      (31) 
 

 

From equation (26) we have (Synge and Schild, 1949) 
 

  
𝑑2𝑥𝛼𝑑𝑠2 +


00 𝑑𝑥0𝑑𝑠 𝑑𝑥0𝑑𝑠  = 0  

  
𝑑2𝑥𝛼𝑑𝑠2 = − 

00
2









ds

dx
= − 

00  

  
𝑑2𝑥𝛼𝑑𝑡2  =−𝑐2 00 .                                      (32)   

Now, for  = 0  

  
0

00  = 0.                                           (33) 

Therefore, 

  
𝑑2𝑥𝛼𝑑𝑡2 = −𝑐2 

00  [for  = 1, 2, 3].                       (34) 

We have  

 
 𝘨𝜇𝛽[𝜇𝜈, 𝛽] = 𝘨𝛼𝛼

 ,
 

 

[By summation convention] 

 

  

          

   = 
12(𝜂𝛼𝛼+ℎ𝛼𝛼) 














 
x

h00                                           (35)

 
Now,  

 𝜂𝛼𝛼 = −1 [For   = 1, 2, 3] 

  
00  = 

12(−1+ℎ𝛼𝛼) 













 
x

h00

 

 

=
12 (1 − ℎ𝛼𝛼)−1 𝜕ℎ00𝜕𝑥𝛼   

Or,  

  

00 12 𝜕ℎ00𝜕𝑥𝛼 .                          (36)                                                                            

 

We have 

  
𝑑2𝑥𝛼𝑑𝑡2 = − 𝑐22 𝜕ℎ00𝜕𝑥𝛼  ; (𝛼 = 1, 2, 3)              (37) 

 

Now from Newton’s equation of motion we have, 
 

   𝑑2𝑥𝛼𝑑𝑡2 + 𝜕Φ𝜕𝑥𝛼 = 0; (𝛼 = 1, 2, 3)         (38) 
 

Where, Φ = 𝐺𝑀𝑟   is the gravitational potential. 
 

Now, acceleration due to gravity is, 
 

  g


 = −∇Φ = −Φ,α = 𝜕Φ𝜕𝑥𝛼                      (39) 
 

From (38) and (39) we have,  
 

 − 𝑐22 𝜕ℎ00𝜕𝑥𝛼 = − 𝜕Φ𝜕𝑥𝛼.                          (40) 

 

Integrating 

 ∫ 𝜕ℎ00𝜕𝑥𝛼 𝑑𝑥𝛼 = 2𝑐2 ∫ 𝜕Φ𝜕𝑥𝛼 𝑑𝑥𝛼 

 1 + h00= 2Φc2 + 𝑘(constant) 𝘨00 = 2Φc2 + 𝑘 (41) 

 

Since in the flat space metric component g = 1 and 

gravitational potential Φ= 0. Hence we have 𝑘 = 1. 
 

So, we have, 

  𝘨00 = 1 + 2Φc2 .                         (42) 

 

This equation implies that Einstein laws of gravitation 

coincide to the Newton’s laws of gravitation.   
 

CONCLUSION: 

In this paper, we try to represent an overview of the 

metric of space-time curvature in a weak gravitational 

field and it is a consequence in Newtonian approxi-

mation. Confidently we can say, this is valuable and 

usable and future we may try to more work on it. 
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